Cambridge IGCSE[™](9–1) | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 5 4 2 0 6 4 7 5 9 5 #### **CO-ORDINATED SCIENCES** 0973/31 Paper 3 Theory (Core) October/November 2020 2 hours You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### **INFORMATION** - The total mark for this paper is 120. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. This document has 32 pages. Blank pages are indicated. DC (MB) 207854 © UCLES 2020 [Turn over 1 (a) Fig. 1.1 is a diagram of the alimentary canal and associated organs. Fig. 1.1 (i) State the letters in Fig. 1.1 that identify where: | | • | egestion occurs | | | |-------|-----|---------------------------------------|---------|-----| | | • | ingestion occurs | | | | | • | saliva is produced | | | | | • | water is absorbed. | | [4] | | (ii) | Nar | me the organ labelled J in Fig | g. 1.1. | [+] | | | | | | [1] | | (iii) | Nar | me the organ labelled E in Fig | g. 1.1. | | | (b) | A student has | written an | incorrect | definition | for | diaestion | in a | human. | |-----|---------------|------------|-----------|------------|-----|-----------|------|--------| |-----|---------------|------------|-----------|------------|-----|-----------|------|--------| The definition the student has written is shown in Fig. 1.2. Digestion is the breakdown of large, insoluble food molecules into small, oil-soluble molecules using mechanical and industrial processes. Fig. 1.2 Circle the **two** incorrect terms in the definition shown in Fig. 1.2. [2] (c) Table 1.1 shows some food molecules and the smaller molecules they are made from. Complete Table 1.1. Table 1.1 | food molecules | smaller molecules | |----------------|--------------------------| | | fatty acids and glycerol | | | amino acids | | starch | | [3] [Total: 11] 2 Metal oxides are formed when metals and oxygen react. Fig. 2.1 shows how magnesium oxide is formed. Fig. 2.1 | | (1) | | | | 41 1 | /1 () | | |-----|-----|------|----------|----------|---------|--------|--------| | (a) | (1) | Thei | reaction | releases | thermal | (heat) | enerav | State the term used to describe a chemical reaction that releases thermal energy. [1] (ii) Balance the symbol equation for the formation of magnesium oxide.Mg + $$O_2 \rightarrow$$MgO [1] (b) Describe two physical properties of magnesium. | 1 | |---| |---| 2[2] (c) Excess aqueous hydrochloric acid is added to magnesium and to magnesium oxide as shown in Fig. 2.2. Fig. 2.2 | (i) | Magnesium and magnesium oxide both react with aqueous hydrochloric acid. | | |------|--|-----| | | Describe one difference and one similarity in the observations made. | | | | difference | | | | | | | | similarity | | | | | | | | | [2] | | (ii) | One of the products made in both reactions in (c)(i) is the same. | | | | State the name of this product. | | | | | [1] | (d) Aqueous hydrochloric acid is added to copper and to $\mathsf{copper}(II)$ oxide. | | The | re is no reaction between the hydrochloric acid and copper. | | |-----|------|--|----| | | Сор | $\operatorname{per}(\Pi)$ oxide reacts and dissolves in the acid. | | | | (i) | Explain why there is no reaction between copper and dilute acid. | | | | | Use ideas about the relative positions of elements in the reactivity series. | | | | | | | | | | [1 | 1] | | | (ii) | Predict whether the solution formed when $copper(\mathrm{II})$ oxide reacts with the acid i coloured or is colourless. | S | | | | Explain your answer. | | | | | | | | | | [1 | 1] | | (e) | Rus | t is formed when iron reacts with oxygen and another substance. | | | | (i) | State the name of the other substance that must be present for iron to rust. | | | | | [1 | 1] | | | (ii) | Barrier methods are used to prevent rusting. | | | | | Name one substance used in the barrier method of rust prevention. | | | | | [1 | 1] | | (| iii) | State one way, other than forming a barrier, that prevents iron from rusting. | | | | | | | | | | [1 | 1] | | | | [Total: 12 | 2] | 3 (a) Fig. 3.1 shows a speed—time graph for a bus journey. Fig. 3.1 - (i) Draw an **X** on the graph where the bus is **not** moving. [1] - (ii) Calculate the distance travelled by the bus in the first 60s of the journey. | m [2] | |-------| |-------| - (b) The bus has a mass of 5000 kg. - (i) Calculate the weight of the bus. The gravitational field strength g is 10 N/kg. (ii) State the source of the gravitational field acting on the bus.[1] (c) Fig. 3.2 shows the forces A, B, C and D as the bus moves forward at constant speed. Fig. 3.2 | | 1 lg. 5.2 | | |------|---|-----| | (i) | Force B is increased. | | | | Describe how this affects the motion of the bus. | | | | | [1] | | (ii) | Force B is 500 000 N. Force D is 100 000 N. | | | | Calculate the resultant force of these two forces. | | resultant force =N [1] # (d) The driver changes a wheel. Fig. 3.3 shows a wrench being used to loosen a wheel nut. Fig. 3.3 The driver applies a force of 1000 N on the wrench. Calculate the moment of this force on the wheel nut. moment =Nm [3] [Total: 10] 4 (a) A scientist investigates the recovery time of an athlete and a non-athlete after exercise. Recovery time is the time taken for the pulse rate to return to normal after exercise. The results are shown in Fig. 4.1. Fig. 4.1 | (i) | State the pulse rate of the non-athlete at rest. | |-------|---| | | bpm [1] | | (ii) | State the length of recovery time for the athlete and the non-athlete. | | | athlete minutes | | | non-athlete minutes | | (iii) | Calculate the difference in recovery times between the athlete and the non-athlete using your answers to (a)(ii). | | | minutes [1] | | (iv) | Describe the changes to the pattern of breathing of the non-athlete between 4 and 8 minutes. | | | | | | | | | | **(b)** During exercise there is increased blood flow through the blood vessels. Fig. 4.2 | | (i) | State one piece of evidence from Fig. 4.2 that shows this blood vessel is an artery. | | |-----|------|---|----| | | | | | | | | [| 1] | | | (ii) | Name one component of blood visible in Fig. 4.2. | | | | | [| 1] | | (c) | The | heart is responsible for pumping blood around the body. | | | | (i) | Name the structure that separates the right and the left sides of the heart. | | | | | [| 1] | | | (ii) | Name the type of tissue the walls of the heart are made from. | | | | | [| 1] | | | | [Total: 9 | 9] | - 5 Thermal decomposition happens when compounds are heated and break down into simpler substances. - (a) Limestone thermally decomposes to produce lime in a lime kiln. Fig. 5.1 shows a lime kiln. Fig. 5.1 | (i) | State the chemical names of limestone and lime. | | |-------|--|-----| | | limestone | | | | lime | | | | | [2] | | (ii) | Suggest why the limestone and carbon inside the lime kiln are in small pieces. | | | | | | | | | [1] | | (iii) | Explain why farmers often treat soil with limestone. | | | | | | | | | [1] | (b) Fig. 5.2 shows apparatus used for the thermal decomposition of sodium hydrogencarbonate. Fig. 5.2 When the sodium hydrogencarbonate in the test-tube is heated for several minutes, the following observations are made. - A gas is released that turns limewater milky. - The cobalt chloride paper changes colour from blue to pink. - A different compound, sodium carbonate, remains in the test-tube. - (i) Use this information to complete the **word** equation for the thermal decomposition of sodium hydrogencarbonate. (ii) The mass of sodium carbonate that remains after the reaction is smaller than the original mass of sodium hydrogencarbonate. | Explain why. | | |--------------|--| | | | | | | | | | | | | (c) Cracking of hydrocarbons is another example of thermal decomposition. Fig. 5.3 shows the cracking of hydrocarbons. Fig. 5.3 (i) Both **X** and **Y** in Fig. 5.3 are mixtures of hydrocarbons. Describe two ways in which molecules in mixture X are different from molecules in mixture Y. | 1 | | |--|-----| | | | | | | | 2 | | | | | | | | | | [2] | | Prodict the change in colour if any when mixture V is chaken with aqueous bromine | | (ii) Predict the change in colour, if any, when mixture Y is shaken with aqueous bromine. 0973/31/O/N/20 | [1] | [1] | |-----|-----| |-----|-----| [Total: 10] # **BLANK PAGE** | (a) | A ca | ar is driven along a road. | | |-----|-------|---|------| | | (i) | State the type of energy the car has due to its motion. | | | | | | [1] | | | (ii) | During the journey, the car becomes electrostatically charged. | | | | | State what has been added to or removed from the car for it to become charged. | | | | | | [1] | | | (iii) | After the journey, the car needs to be refuelled at a gasoline (petrol) station. | | | | | State the type of energy stored in the fuel. | | | | | | [1] | | | (iv) | Not all of the energy stored in the fuel is transferred to the forward motion of the car. | | | | | Explain why this is. | | | | | | | | | | | [1] | | (b) | An | electric car may be recharged by solar cells. | | | | Cor | nplete the sentences to describe how a solar cell can provide energy. | | | | Ligh | nt energy from the is absorbed by the solar cell. | | | | The | solar cell changes the light energy to energy. | [2] | | (c) | The | electric car has a powerful d.c. motor. | | | | | turning effect of the motor can be increased by increasing the number of turns on the ne motor. | coil | | | Sta | te one other way to increase the turning effect of the d.c. motor. | | | | | | [1] | (d) (i) The two headlamps of the car are powered by the car battery. The lamps are connected in parallel. Complete the circuit diagram in Fig. 6.1 to show the two lamps connected in parallel, both controlled by one switch. The battery has been drawn for you. Fig. 6.1 [3] (ii) State **one** advantage of connecting the lamps in parallel.[1] [Total: 11] - **7 (a)** A student investigates the changes to plant cells when they are immersed in different concentrations of sugar solutions. - Fig. 7.1 shows a plant cell before immersion in a sugar solution. Fig. 7.1 Fig. 7.2 shows the concentrations of the sugar solutions used and the appearance of the cells after immersion. Fig. 7.2 | | (i) | On Fig. 7.2, draw lines to link each concentration of sugar solution to the final appearance of the plant cell. | |-----|------|--| | | (ii) | Suggest which plant cell, A , B , C or D , was placed in a solution of the same concentration as the plant cell. | | | | [1] | | (b) | The | change in appearance of the plant cells is caused by osmosis. | | | Des | cribe the process of osmosis. | | | | | | | | | | | | [2] | | (c) | Wat | er and carbon dioxide are the raw materials needed for photosynthesis. | | | (i) | State two other requirements needed for photosynthesis. | | | | 1 | | | | 2 | | | (ii) | Complete the flowchart to show the pathway of water through a plant. | | | | → root cortex cells → → mesophyll cells [2] | | (d) | Pla | nts use photosynthesis to make their own nutrients. | | | | te the term used to describe organisms that use photosynthesis to make their own ients. | | | | [1] | | | | [Total: 11] | - **8** Electrolysis is used to extract some elements from their ores. - (a) Aluminium is extracted using electrolysis. State the name of the ore from which aluminium is extracted.[1] **(b)** Use words from the list to complete the sentences about electrolysis. Each word may be used once, more than once or not at all. | boiling | chemical | current | electron | evaporation | |---------|----------|----------|------------|-------------| | melting | physical | reacting | resistance | voltage | In electrolysis, an electric passes through an electrolyte. The electrolyte is made either by dissolving a compound in water or byit. Electrolysis is an example of a change. [3] (c) Fig. 8.1 shows three sets of apparatus, Q, R and S, that a student uses to investigate electrolysis. Each beaker contains aqueous solutions of different compounds. All of the electrodes are inert. Fig. 8.1 Table 8.1 shows the observations the student makes. Table 8.1 | apparatus cathode product ano | | anode product | ammeter reading/A | |-------------------------------|--------------|---------------|-------------------| | Q | hydrogen gas | chlorine gas | 0.2 | | R | no product | no product | 0.0 | | S | hydrogen gas | oxygen gas | 0.2 | | | (i) | Suggest the compound that is dissolved to form the electrolyte in apparatus Q . | | |-----|-------|--|-----| | | | | [1] | | | (ii) | Suggest a reason why the solution in apparatus R does not conduct. | | | | | | | | | | | [1] | | | (iii) | The electrolyte in apparatus S is an aqueous acid. | | | | | Suggest the name of this acid. | | | | | | [1] | | (d) | Ator | ns and ions contain protons and electrons. | | | | Prot | ons and electrons are electrically charged particles. | | | | (i) | Explain why a potassium atom is electrically neutral. | | | | | Use ideas about the charges on the particles in your answer. | | | | | | | | | | | [2] | | | (ii) | Explain why a potassium ion has an electrical charge of +1. | | | | | Your answer should include: | | | | | how a potassium ion is formed why it has a charge of +1. | | | | | | | | | | | | | | | | [2] | | | | | | [Total: 11] | | | | | 22 | |---|-----|-------|---|---| | 9 | Ben | eath | the surface of the Earth, solid roc | ks are heated and form liquid rock (magma) and gases. | | | (a) | (i) | On Fig. 9.1, draw lines to link oparticles. | each state of matter with the correct arrangement of | | | | | state of matter | arrangement of particles | | | | | gas | | | | | | liquid | | | | | | solid | 0 0 | | | | | | Fig. 9.1 | | | | (ii) | In some places, the hot magma of | omes to the surface as lava. | | | | | Some hot lava flows into water in | a lake. | | | | | A liquid-in-glass thermometer is lake. | used to measure the temperature of the water in the | | | | | The liquid in the thermometer rise | es as the water in the lake is heated. | | | | | Explain why the liquid in the therr | nometer is able to show the increase in temperature. | | | | | | | | | | | | [1] | | | (| (iii) | A different thermometer has no se | cale on it. | | | | | Describe how melting ice and bothermometer. | oiling water can be used to identify fixed points on this | **(b)** People standing near the hot lava feel the thermal energy being emitted by infrared radiation. | On F
spect | • | nfrared radiation | on in the corre | ct place on the | e incomplete e | lectromagnetic | |---------------|----------------|-------------------|------------------|-------------------------|-----------------|----------------| | gamma
rays | | | | | microwaves | | | | | | Fig. 9.2 | | | [1] | | (c) A coo | oled sample of | lava is tested f | or radioactivity | | | | | Desc | ribe how a rad | iation detector | is used to dete | ermine if $lpha$ -parti | icles are being | emitted. | | | | | | | | |[2] (d) The lava contains the isotope potassium-40. The nuclide notation is $^{40}_{19} \mathrm{K}$. State the number of protons and neutrons in the nucleus of potassium-40. number of protons number of neutrons [Total: 9] [2] | 10 | (a) | Complete the sentences about the nervous system using words from the list. | |----|-----|--| | | | Each word may be used once, more than once or not at all. | | | | | backbone | bra | in | chemical | | | | | | |-----|-----------------|-------------------|-------------------|----------------------|----------------|------------------|------------|--|--|--|--| | | | elec | trical | nerve | per | ipheral | | | | | | | | The | ere are two parts | s to the human ne | ervous system | n. The centra | ıl nervous syste | m and the | | | | | | | nervous system. | | | | | | | | | | | | | The | e central nervous | s system consists | s of the | | and | the spinal | | | | | | | cor | d. | | | | | | | | | | | | Res | sponses are coo | ordinated by impu | ulses, which a | re | | signals | | | | | | | pas | sed along | | cells | called neuro | nes. | [4] | | | | | | (b) | Fig. | . 10.1 shows a ty | ype of neurone. | | | | | | | | | | | | receptor | direc | tion of impulse | | spinal cord | | | | | | | | | | | 0 | | | | | | | | | | | | | Fig. 10.1 | | | | | | | | | | ldei | ntify the type of | neurone shown i | n Fig. 10.1. | | | | | | | | | | | | | | | | [1] | | | | | | (c) | Hor | mones coordina | ate and regulate | responses. | | | | | | | | | | A h | ormone controls | the response in | shoots and ro | oots in plants | S. | | | | | | | | (i) | Describe the re | esponse of the sl | hoots and roo | ts to gravity. | | | | | | | | | | Include the nar | me of the respon | se in your ans | swer. | (ii) | Name one other stimulus that shoots and roots respond to. | |------|--| | | [1] | | | [Total: 9 | 11 Carbon occurs as a free element in the Earth's crust. Carbon also occurs in millions of different compounds. (a) Fig. 11.1 shows the structures of two forms of carbon, A and B. Fig. 11.1 | (i) | State the names of these forms of carbon. | | |-----|--|-----| | | A | | | | В | | | | | [2] | | ii) | State the type of chemical bonding and structure present in both A and B . | | | | type of bonding | | | | type of structure | | | | | [2] | (b) The pie charts in Fig. 11.2 show the compositions of two gas mixtures, ${\bf L}$ and ${\bf M}$. Fig. 11.2 (i) Gas mixture L is the fossil fuel, natural gas. | Identify gas Q . | | | | |-------------------------|--|--|--| | | | | | | | [1] | |------|--| | (ii) | A student wants to distinguish between mixture ${\bf L}$ and mixture ${\bf M}$. | | | Describe a test he can do. Include the results in each case. | | | test | | | result with L | | | result with M | [Total: 7] [2] **12** (a) Fig. 12.1 shows a boy looking into a plane mirror. He can see the reflection of an apple. Fig. 12.1 (i) Name the line XY shown on Fig. 12.1. (ii) On Fig. 12.1, draw the reflected ray to the boy and label with the words reflected ray. [1] (iii) On Fig. 12.1, mark the angle of incidence and label with the letter i. [1] (iv) Circle the two correct words or phrases that describe the image of the apple in the mirror. diminished enlarged laterally inverted same size upside down [2] **(b)** The boy takes a photograph of the apple using a digital camera with a thin converging lens as shown in Fig. 12.2. Fig. 12.2 - (i) On Fig. 12.2, draw a ray of light from the bottom of the apple to show where it will be detected on the image sensor of the camera. [2] - (ii) On Fig. 12.2, draw a double-headed arrow (←→) to show the focal length of the lens. - (c) To improve the photograph, the boy uses the camera flash. The flash is a lamp operated by a cell and a switch. The current in the lamp is 0.5A. The voltage across the lamp is 6 V. Calculate the resistance of the lamp. resistance = Ω [2] [Total: 10] # **BLANK PAGE** # **BLANK PAGE** The Periodic Table of Elements | | III/ | 2 | He | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|------|---|----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | | | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ğ | bromine
80 | 53 | Н | iodine
127 | 85 | ¥ | astatine
_ | | | | | | 5 | | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Po | polonium | 116 | _ | livermorium
- | | | > | | | | 7 | z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | :Ē | bismuth
209 | | | | | | ≥ | | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | S | 119
119 | 82 | Ър | lead
207 | 114 | Εl | flerovium
– | | | ≡ | | | | 2 | В | boron
11 | 13 | Ρl | aluminium
27 | 31 | Ga | gallium
70 | 49 | I | indium
115 | 81 | l_l | thallium
204 | | | | | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | В | cadmium
112 | 80 | Hg | mercury
201 | 112 | S | copernicium | | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 79 | Αn | gold
197 | 111 | Rg | roentgenium
- | | dn | | | | | | | | | | | 28 | Z | nickel
59 | 46 | Pd | palladium
106 | 78 | ₹ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | | 27 | ပိ | cobalt
59 | 45 | 뫈 | rhodium
103 | 77 | 'n | iridium
192 | 109 | ¥ | meitnerium
- | | | | _ | I | hydrogen
1 | | | | | | | 26 | Ьe | iron
56 | 44 | Ru | ruthenium
101 | 92 | SO | osmium
190 | 108 | ¥ | hassium | | | | | | | ı | | | | | | 25 | M | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium | | | | | | | | loc | ass | | | | 24 | ර් | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | g | niobium
93 | 73 | ц | tantalum
181 | 105 | Вb | dubnium
– | | | | | | | 6 | ato | rela | | | | 22 | F | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 꿆 | rutherfordium
- | | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 56 | Ва | barium
137 | 88 | Ra | radium | | | _ | | | | 3 | = | lithium
7 | 1 | Na | sodium
23 | 19 | × | potassium
39 | 37 | & | rubidium
85 | 55 | CS | caesium
133 | 87 | Ļ | francium
– | | 7.1 | Γn | Intetium | 175 | 103 | ۲ | lawrencium | I | |-----|----|--------------|-----|-----|-----------|--------------|-----| | | ΥÞ | | | | | _ | | | 69 | Tm | thulium | 169 | 101 | Md | mendelevium | I | | 89 | щ | erbium | 167 | 100 | Fm | ferminm | I | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | ò | dysprosium | 163 | 86 | ర | californium | I | | 65 | Тр | terbium | 159 | 26 | Ř | berkelium | ı | | 64 | В | gadolinium | 157 | 96 | Cm | curium | ı | | 63 | Ш | europium | 152 | 92 | Am | americium | 1 | | 62 | Sm | samarium | 150 | 94 | Pu | plutonium | I | | 61 | Pm | promethium | ı | 93 | ď | neptunium | I | | 09 | PΝ | neodymium | 144 | 92 | \supset | uranium | 238 | | 69 | Ą | praseodymium | 141 | 91 | Ра | protactinium | 231 | | 58 | Ce | oerium | 140 | 06 | T | thorium | 232 | | 22 | La | lanthanum | 139 | 68 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.